Systemic adjuvant therapy of patients with high-risk melanoma: Progress to 2003 Promise for the Future

John M. Kirkwood, MD
Professor and Vice Chairman
Department of Medicine
University of Pittsburgh Cancer Institute
Chairman, ECOG Melanoma Committee

Acknowledgements:
ECOG, SWOG, and CALGB participants and members of the University of Pittsburgh Cancer Institute Melanoma Center
Current status of melanoma therapy 2003

- No properly tested therapy demonstrates capability to prolong survival of populations with metastatic disease
 - Promising new therapies may be better evaluated in high-risk setting without active disease
- Relapse and death risk are accurately predicted by microstage/ulceration and regional [sentinel] node evaluation
 - Molecular markers of disease risk are needed
- Immunological responses to tumor are measurable and inducible, and may be correlated with disease outcome
Intergroup E3695: Survival data for aggressive biochemotherapy do not support its use

p = 0.696

Atkins, et al., Proc ASCO 2003
Adjuvant therapy decisions for patients with high-risk melanoma

- Evidence-based: randomized, controlled, multicenter (RCT) trials are our best evidence—with endpoints
 - survival (OS)
 - relapse interval (RFS)
 - quality of life (QOL)
- Molecularly defined interventions, intermediate endpoints
 - host immune response, tumor cell death (apoptosis), vascularization (angiogenesis)
- Paradigm shift: advanced -> adjuvant -> precursor focus
Adjuvant Therapy of Melanoma

Questions

- Definition of effective therapy?
- Acceptable risk-benefit ratio?
- Does benefit differ for some subsets (e.g., patients grouped by stage)?
- Is there a relationship of dose and response?
- Are there alternatives?
Adjuvant Therapy of Melanoma

Potential definitions of efficacy

Survival
- Survival prolongation of 12 mos. (median)
- Durability of survival benefits at 5 yr or more
- Cure of at least 5% of patients

Disease-free status
- Prolongation relapse-free interval by >12 mos.
- Durability of relapse-free interval gains (≥ 10y)

Improved quality-adjusted survival
Among therapies evaluated in RCT, only high-dose IFNα2 has ever shown durable survival prolongation and reduction of relapses

- Nonspecific Immunostimulants (BCG, C. parvum, OK432)
- Chemotherapy & Chemobiotherapy
- Interferons & Cytokines
 - IFNα2
 - IFNγ
 - IL-2
 - GM-CSF
- Vaccines and Adoptive Cellular/Passive Ab Transfer
 - Antibody (B cell)-inducing (Gangliosides)
 - Effector T cell-inducing (Peptides proteins, DNA...
Published trials of adjuvant IFNα2 for high-risk T3-4/node (+) melanoma (AJCC stage IIB/III)

<table>
<thead>
<tr>
<th>Cooperative group/PI</th>
<th>Eligibility</th>
<th>n</th>
<th>Treatment agent dosage duration</th>
<th>Significant Impact on DFS</th>
<th>OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOG 1684 Kirkwood</td>
<td>T4, N1</td>
<td>287</td>
<td>IFNα2b 20 MU/M2/D IVx1 mo 10 MU/M2 SC TIW for 11 mos</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>NCCTG 837052 Creagan</td>
<td>T3-4, N1</td>
<td>262</td>
<td>IFNα2a 20 MU/M2/D IM TIW x3 mos</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>WHO #16 Cascinelli</td>
<td>N1-2</td>
<td>444</td>
<td>IFNα2a 3 MU/D SC TIWx3 yrs</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>EORTC 18871 Kleeberg</td>
<td>T3-4, N1</td>
<td>830</td>
<td>IFNα2b 1 MU/D SC QODx1 yr vs IFNg 0.2 mg/D SC QODx1yr</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E1690 Intergroup Kirkwood</td>
<td>T4, N1</td>
<td>642</td>
<td>IFNα2b 20 MU/M2/D IVx1 mo 10 MU/M2 SC TIWx11 mos vs 3 MU/D SC TIWx2 yrs</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>E1694 Intergroup Kirkwood</td>
<td>T4, N1</td>
<td>880</td>
<td>IFNα2b 20 MU/M2/D IVx1 mo 10 MU/M2 SC TIWx11 mos vs GMK vaccine x 96 wks</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ECOG 2696 Kirkwood</td>
<td>T4, N1, M1</td>
<td>107</td>
<td>GMK + IFN or -->IFN vs GMK</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Analysis of Adjuvant Trials:
Hazard Ratios for comparison of *rates of events* over time using all Kaplan-Meier data (Log-rank analysis)

Hazard ratio for relapse or death expresses comparison of outcomes for arm not treated with IFN vs. arm treated with IFN in a single number

- $1 = \text{no difference between arms}$
- $>1 = \text{high-dose IFN is better}$
- $<1 = \text{observation better}$
E1684: Study Design

Randomization
N = 287
(within 56 days)

Observation
52 wk

IFN-α2b

Induction
4 wk

Maintenance
48 wk

Induction: 20 MIU/m² IV 5× weekly × 4 wk
Maintenance: 10 MIU/m² SC TIW × 48 wk
Design: Exponential model, hazard ratio analysis
Stratification: AJCC stage groupings

E1684: Relapse-Free Survival (Eligible Cases) at 6.9 yr Median Follow-up

![Graph showing relapse-free survival with treatment groups.

- **Treatment groups (n = 280)**
 - IFN-α2b
 - Observation

- **Hazard Ratio for relapse w/o IFN** 1.43
 - Significant at p=.002

<table>
<thead>
<tr>
<th></th>
<th>No. patients</th>
<th>No. relapsed</th>
<th>Median yr</th>
<th>P value</th>
<th>5-yr RFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α2b</td>
<td>143</td>
<td>90</td>
<td>1.72</td>
<td><.01</td>
<td>37%</td>
</tr>
<tr>
<td>Observation</td>
<td>137</td>
<td>103</td>
<td>0.98</td>
<td></td>
<td>26%</td>
</tr>
</tbody>
</table>

Impact of HDI versus Observation at 6.9 yr median follow-up

- Relapse Free Survival significantly improved ($P_1 = 0.0023$)
- Estimated 5-yr RFS: 37% versus 26%
- Overall hazard ratio for relapse: 1.43

Intergroup E1690 Phase III Trial of High or Low Dose IFN-α2b Versus Observation

Randomization
N = 642 (within 70 days)

- High-dose IFN-α2b × 1 yr
- Low-dose IFN-α2b × 2 yr
- Observation

- Goal: Determine if low-dose IFN-α2b for 2 yr is effective as high-dose IFN-α2b for 1 yr
- Design: Cure rate model, hazard ratio analysis
- Stratification: AJCC stage groupings and number of positive nodes

E1690: Relapse-Free Survival

Treatment groups (n = 608)
- High-dose IFN
- Low-dose IFN
- Observation

Hazard Ratio for Relapse w/o HD IFN = 1.24
Significant at p = .05

Intergroup E1694 Phase III Study of Ganglioside GM2 Vaccine (GMK) Versus High-Dose IFN-α2b

Randomization
N = 880 (within 70 days)

GMK SC Days 1, 8, 15, 22, and Weeks 12, 24, 36 48, 60, 72, 84, 96,
versus
HDI 20 MIU/m² IV 5× weekly × 4 wk
10 MIU/m² SC TIW × 48 wk

- Goal: Determine if GMK is superior to HDI
- Design: Cure rate model
- Stratification: Number of involved nodes
- First Intergroup US Trial adopting HDI as a reference standard for adjuvant therapy of high risk melanoma

E1694: Relapse-Free Survival

Treatment groups (n = 774)

IFN-α2b

GMK

Hazard Ratio for Relapse w/o IFN 1.33
Significant at p= .002

Months and no. events/no. at risk

<table>
<thead>
<tr>
<th>Group</th>
<th>0-10</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α2b</td>
<td>74/385</td>
<td>19/178</td>
<td>3/84</td>
<td>2/25</td>
<td>0/1</td>
</tr>
<tr>
<td>GMK</td>
<td>110/389</td>
<td>32/188</td>
<td>7/90</td>
<td>2/23</td>
<td>0/1</td>
</tr>
</tbody>
</table>
Updated Relapse-Free Survival Is Highly Significant for Trials E1684-1690-1694-2696

E1684

IFN vs Observation: $p_2=0.02$, $p_1=0.01$, HR=1.38

E1690

IFN vs Observation: $p_2=0.09$, HR=1.24

E1694

IFN vs GMK: $p_2=0.006$, HR=1.33

E2696

GMK + Concurrent IFN vs GMK Alone: $p_2=0.18$, HR=1.56
GMK + Sequential IFN vs GMK Alone: $p_2=0.14$, HR=1.64
Does High Dose IFNα2b improve overall survival?

Two large multicenter randomized trials of high-dose IFNα2b show a significant overall survival advantage

- ECOG Trial E1684
 - Compared to observation
- US Intergroup Trial E1694
 - Compared to most promising vaccine available for intergroup study in 1995 (ganglioside GM2)
Impact of HDI versus Observation at 6.9 yr median follow-up

- Median OS significantly improved \((p_1 = .0237) \)
- Estimated 5-yr OS: 46% versus 37%
- Overall hazard ratio for death w/o IFN: 1.32

E1684: Overall Survival at 6.9 yr Median Follow-up

Treatment groups (n = 280)

- **IFN-α2b**
 - No. patients: 143
 - No. dead: 81
 - Median yr: 3.82
 - P value: < .047
 - 5-yr survival: 46%

- **Observation**
 - No. patients: 137
 - No. dead: 90
 - Median yr: 2.78
 - P value: < .047
 - 5-yr survival: 37%

Hazard Ratio for Death w/o IFN 1.32
Significant at p=.023
E1694: Overall Survival

Treatment groups (n = 774)
- IFN-α2b
- GMK

Hazard Ratio for Death w/o IFN 1.38
Significant at p=.009

Time interval, mo

<table>
<thead>
<tr>
<th>Group</th>
<th>0-10</th>
<th>10-20</th>
<th>20-30</th>
<th>30-40</th>
<th>40-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN-α2b</td>
<td>11/385</td>
<td>29/258</td>
<td>11/125</td>
<td>1/38</td>
<td>0/1</td>
</tr>
<tr>
<td>GMK</td>
<td>23/389</td>
<td>42/264</td>
<td>14/132</td>
<td>2/38</td>
<td>0/2</td>
</tr>
</tbody>
</table>
E1694: Updated Overall Survival (ITT at 2.1 years Median Follow-up)

Log-rank test $P_2 = .04; P_1 = .02$

Updated HR for death w/o IFN 1.32

Treatment groups (n = 743)

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Dead</th>
<th>Alive</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMK</td>
<td>439</td>
<td>127</td>
<td>312</td>
<td>3.8</td>
</tr>
<tr>
<td>High-dose IFN</td>
<td>438</td>
<td>102</td>
<td>336</td>
<td>NR</td>
</tr>
</tbody>
</table>
Overall Survival

E1684

IFN vs Observation: \(p_2 = 0.16, p_1 = 0.09, HR = 1.22 \)

E1690

IFN vs Observation: \(p_2 = 0.98, HR = 1.00 \)

E1694

IFN vs GMK: \(p_2 = 0.04, HR = 1.32 \)

E2696

GMK + Concurrent IFN vs GMK Alone: \(p_2 = 0.65, HR = 1.20 \)

GMK + Sequential IFN vs GMK Alone: \(p_2 = 0.64, HR = 1.20 \)
What is the balance of risk-benefit ratio for treatment:

- Interferon toxicity
- Quality-adjusted time without symptoms or toxicity
- Cost-efficacy

Common Grade 3/4 Adverse Events in Patients Treated With High-Dose IFN-α2b

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>E1684</th>
<th>E1690</th>
<th>E1694</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue</td>
<td>23</td>
<td>24</td>
<td>21</td>
</tr>
<tr>
<td>Fever</td>
<td>18</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Myalgia</td>
<td>17</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Nausea</td>
<td>–</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Vomiting</td>
<td>–</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Anorexia</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Myelosuppression</td>
<td>26</td>
<td>58</td>
<td>60</td>
</tr>
<tr>
<td>Liver (increased SGOT)</td>
<td>14</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

§Based on data in the prescribing information from 143 patients treated with high-dose IFN-α2b in Trial E1684.
||Category includes neurologic manifestations characterized as depression, neuropsychiatric, or neuropsychological toxicity.
Safety Summary for High-Dose IFN-α2b

- All patients receiving HDI therapy experience mild-to-moderate side effects
- Some patients experience more severe side effects, including severe fatigue and flu-like symptoms, abnormal blood counts or liver functions, and depression
- Discontinuation of treatment due to adverse events
 - 24% of patients in E1684
 - 13% of patients in E1690
 - 10% of patients in E1694
- The majority of patients can tolerate a full course of 52 weeks with appropriate supportive measures and dose modifications

Kirkwood et al., J.Clin. Oncol. 2002
Interferon toxicity: *Quality-of-Time Analyses (‘Q-TWiST’)*

Node-positive patients

Toxicity is not paramount

Relapse time is of lesser quality

Quality-adjusted time improved significantly

A majority of patients state they would accept

1. Mild-moderate IFNα-2b side effects for at least a 4% improvement in 5 yr DFS

2. Severe IFNα-2b side effects for at least a 10% improvement in 5 yr DFS
Applications

- Patient-defined utilities are useful to decide value of quality-adjusted survival benefit of adjuvant IFNα-2b for specific patients

- Methods include Q-TWiST analysis and decision time-utility analysis
Does the benefit of HDI differ according to the stage (nodal status)?

- Early data suggested greatest benefit in patients with nodes involved (N+)
- Subsequent data has favored groups with few nodes involved (N2)
- Most recent and largest trial shows greatest benefit in those without clinical evidence of nodal involvement (N0)
Subset analysis of benefit by number of positive nodes in completed published phase III studies

<table>
<thead>
<tr>
<th>Number of nodes positive</th>
<th>E1684 (ITT)</th>
<th>E1690 (eligible)</th>
<th>E1694 (eligible)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.53</td>
<td>1.46</td>
<td>2.07 (\dagger)</td>
</tr>
<tr>
<td>1</td>
<td>2.29 (\S)</td>
<td>1.00</td>
<td>1.44</td>
</tr>
<tr>
<td>2 – 3</td>
<td>1.24</td>
<td>1.92 (|)</td>
<td>1.16</td>
</tr>
<tr>
<td>(\geq) 4</td>
<td>1.18</td>
<td>1.15</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Hazard ratios for E1684 are based on intent-to-treat, whereas the hazard ratios given for E1690 and E1694 are based on eligible cases, reflecting OBS or GMK risk over IFN.

\(\S P = .0015\); \(\| P = .02\); \(\dagger P = .01\).
Does the benefit of HDI differ according to the tumor burden, stage, or nodal status?

Conclude:

- No trial has been of adequate size (power) to evaluate the real impact in disease subsets
- Relative risk reduction is probably equivalent across disease stage-defined subsets
Conclusion: Efficacy of adjuvant IFN in high-risk melanoma is established and a foundation for progress

- Highest level of evidence based on analysis of primary endpoints of prospective randomized multicenter cooperative group trials
 - High-dose IFN-α2b benefit is consistent in terms of RFS and OS, compared to observation and to GMK
 - Hazard for relapse without IFN rises 1.24-1.38 fold
 - Hazard for mortality rises 1.22-1.32 fold
 - No differential stage-specific effects are meaningful
No less toxic regimen is effective

- Very low dose interferon (1 MU SC QOD)
 - EORTC 18871
- Low dose interferon (3 MU SC TIW)
 - WHO Trial 16, ECOG 1690, UK AIM-High, & Scottish trial
- Intermediate-dose interferon (SC)
 - EORTC 18952
 - EORTC 18991
Are there leads with Intermediate doses of interferon?

- Previous possibility from EORTC 18952 testing two intermediate doses of 5 MU sc 3x/wk for 2 years or 10 MU sc 3x/wk for 1 year
 - Total dose ~1/2 of E1684
 - No intravenous induction phase
 - Reported improvement in disease-free survival at median of 1.9 years (2001) -- now without overall survival benefit

 - Data reported to 3rd Int. Congress on Melanoma Research 26 May 2003 by Eggermont, AMM
Current Active Adjuvant Melanoma Trials

- **Improve therapeutic index of HDI using induction IFN only, or pre-operative ‘neoadjuvant’ application**
 - Intergroup E1697: 1 month IV HDI vs. Obs for intermediate risk stage IIA[US], IIB/IIIA[CA-AU]
 - Univ. Pittsburgh Melanoma Center trial 00-008 1 month IV HDI given as a neoadjuvant

- **Evaluate more aggressive empiric combinations of chemobiotherapy**
 - Intergroup S0008: CVD-IFN-IL-2 × 3 months vs HDI for 1 yr. In stage III B/C

- **Introduce new cytokines and more specific peptide vaccine interventions**
 - Intergroup E4697: Adjuvant evaluation of GM-CSF and multiple epitope peptide vaccine in resected stage IIIB,C & M1
E1697 - A randomized study of four weeks of high-dose interferon alpha-2b in stage T3-T4 or N1 (microscopic) melanoma

Hypothesis: Induction IV IFN is necessary and sufficient to achieve durable adjuvant benefit in intermediate-risk melanoma patients

STRATIFICATION
Pathologic Lymph Node Status
- Known
- Unknown

Lymph Node Staging Procedure
- Sentinel Lymph Node Procedure
- Elective Lymph Node Dissection
- No Lymphadenectomy

Breslow Depth
- 1.5 - 3 mm
- 3.1 - 4 mm
- > 4 mm

Ulceration of Primary Lesion
- Yes
- No

Disease Stage
- Lymph Node Positive
- Lymph Node Negative

Arm A:
Observation

Arm B:
4 week high-dose IFN alfa-2b (Intron A)
20 MU/m²/d qd IV for 5 consecutive days out of 7 (M-F) every week times 4 weeks
S0008 - Phase III trial of high-dose interferon alpha-2b vs cisplatin, vinblastine, DTIC + IL-2 and interferon in patients with high-risk melanoma

Hypothesis: Chemobiotherapy will have an adjuvant effect superior to HDI in high-risk melanoma

Randomization

Arm 1
One year high-dose IFN alpha-2b (Intron A)

Induction Therapy - Weeks 1-4

Maintenance - Weeks 5 - 52

Arm 2
Cisplatin (CDDP)
Dacarbazine (DTIC)
Vinblastine
Interleukin 2 (IL-2)
Interferon alfa-2b
G-CSF

Repeat cycle every 21 days
Maximum of 3 cycles

Stratification by newly diagnosed versus recurrent disease; further stratification by ulceration of the primary tumor and nodal status for newly diagnosed disease
Are there vaccine alternatives?

- Allogeneic, polyvalent vaccines
- Autologous tumor vaccines
- Defined antigen vaccines
 - Gangliosides
 - Peptides
- Dendritic cell-based vaccines
- Genetically modified tumor vaccines
T Cell Recognition of Tumor Epitopes →CD8 (killer) and CD4 (helper) Vaccines

- **TCR**
- **MHC I**
- **MHC II**
- **Lysis**
- **Cytokines**
- **Tumor Regression**

Diagram:
- Anti-Tumor CD8+ CTL
- Anti-Tumor CD4+ T Cell
- MHC I
- MHC II
- Class I
- Class II
- Tumor Antigen
- Tumor
Progressive Paraneoplastic Vitiligo

Immune recognition and response to melanosomal markers that may be harnessed to treat melanoma

Nordlund, Kirkwood 1983; Bloasberg, O’Day 2003 Proc ASCO 2857
Peptide antigens of melanoma available for CD8 and CD4 T cell stimulation

Differentiation Antigens

- HLA-A2 and DR-4 bound epitopes of
 - Melan A/MART-1 (multiple)
 - gp100 (HMB45) (multiple, both mutated and native)
 - Tyrosinase (internal, leader)

Cancer-Germline Antigens

- HLA-A1 and other epitopes of
 - MAGE-1, 3

- HLA-A2 and Pan-DR bound epitopes of
 - ESO-1
Immunodominant epitopes of several lineage/differentiation antigens are identified, and prepared for evaluation in cooperative group trials

- MART-1/Melan-A (27-35),
- gp100 (209-217, 210M)
- tyrosinase (368-376, 370D)

No large studies of immunological response and clinical response to vaccination with multiple epitopes of the differentiation class yet conducted

Kirkwood et al., Proc ASCO 2003
GM-CSF and IFN α2 are both modulators of antigen presenting cell (DC) function
- GM CSF has effects locally administered with vaccines, and may have benefit systemically with vaccines
 - clinically evaluated regimen of 250 mcg daily s.c./d for 14 day q. 28 days
- IFN α2 has been studied in vitro, in experimental animals, and in human adjuvant trials
 - clinically most effective IV and SC at dosages of ≥10 Mu/M2/d
Potential Functions of GM-CSF and IFNα upon DC Subsets and Polarization of the Immune Response

GM-CSF

IFN α

Th0

Th1

Th2

Tr/Th3

Cell-Mediated Anti-Tumor Immunity

Humoral Anti-Tumor Immunity

GM-CSF

IFN α

IL-12

IL-18

IFN-γ

IL-4

IL-5

IL-10

IL-10

TGF-β?

DC1

DC2

iDC

iDC
E1696 Goal

- To evaluate the immunological and antitumor efficacy of multi-epitope peptide vaccine MGT for HLA-A2+ patients with metastatic melanoma
- To compare the immunological and antitumor efficacy - vaccination q 2 weeks with three melanosomal peptides M/G/T
 - (A) alone
 - (B) +GM-CSF 250 mcg daily for 14/28 days each month
 - (C) +IFNα2b10 MIU/M2 TIW
 - (D) +both IFNα2b and GM-CSF at above dosages

Kirkwood et al., Proc ASCO 2003
E1696 Immunological Endpoints

Initial assay
- ELISPOT
 - Developed in the context of 3 prior UPCI peptide vaccination trials against lineage antigen peptides (n=83)
ELISPOT assay detecting production of interferon gamma by individual T cells from the peripheral blood of a patient after vaccination with Melan-A/MART 1 peptide
E1696 Eligibility and Demographics

- Measurable metastatic melanoma
- Normal laboratory values
- Prognosis of > 3 mos OS
- Entered: 120 patients
- Evaluable at 3 months with laboratory assays completed
 - 60 patients
 - Pending laboratory analysis, 30 patients

- Prior therapy with
 - Chemotherapy 33
 - Radiotherapy 18

Kirkwood et al., Proc ASCO 2003
E1696: Multiepitope Immunization
+ IFNα2b + GMCSF in Metastatic Measurable Melanoma

Eligibility
1. Measurable Metastatic Melanoma
2. HLA-A2+
3. PS 0-1
4. Labs

Peptide Vaccination in All Groups:
- Melan A/MART-1:27-35 AAGIGLTV
- gp100:209-217 (210M) IMDQVPFSV
- Tyrosinase: 368-376 (370D) YMDGTMSQV

<table>
<thead>
<tr>
<th>ARMS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-CSF</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>IFNα2b</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
E1696 Initial Analysis:
Immune response to peptides is not correlated with IFN, GM-CSF therapy

- Immunologic Response Data (n=60)
 ELISPOT (-): 40/60=67%
 ELISPOT (+): 20/60=33%

- ELISPOT (+) % by IFN Treatment (n=60)
 IFN: 9/31=29%
 No IFN: 11/29=38%

- ELISPOT(+)% by GM-CSF Treatment (n=60)
 GM-CSF: 10/27=37%
 No GM-CSF: 10/33=30%

Elispot performed directly on blood lymphocytes: (+) if >26 spots increment over baseline at d43, d85 (95% CI response to nonvaccine epitopes in 83 patients previously studied at UPCI)
E1696 Initial Analysis: Immune Response by Elispot is Correlated with Overall and Progression-Free Survival

ELISPOT (-)
- OS (n=40)
 Median 13.4 mo
 95% CI (8.7, 15.7)
- PFS (n=28)
 Median 2.8 mo
 95% CI (2.7, 3.0)

ELISPOT (+)
- OS (n=20)
 Median 21.3 mo
 95% CI (10.7, 21.3)
- PFS (n=18)
 Median 2.5 mo
 95% CI (2.5, 4.8)

Kirkwood et al., Proc ASCO 2003
E1696: Correlation of Overall Survival
and CD8 IFNγ Elispot Response

Survival Probability

<table>
<thead>
<tr>
<th>elispot</th>
<th>Months</th>
<th>TOTAL -</th>
<th>DEAD</th>
<th>ALIVE</th>
<th>MEDIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>20</td>
<td>8</td>
<td></td>
<td>12</td>
<td>21.3</td>
</tr>
<tr>
<td>-</td>
<td>40</td>
<td>19</td>
<td></td>
<td>21</td>
<td>13.4</td>
</tr>
</tbody>
</table>

P_2 = 0.203
Immunity to CD8 epitopes of three lineage antigens is possible to induce in 1/3 of patients with measurable metastatic disease

- ELISPOT assays without *in vitro* stimulation

Immune response to lineage antigens is associated with trend to longer median survival

Immune response to lineage antigens is associated with a trend to non-progression of melanoma

Protocol closed to accrual 5/14/03 with 120 patients; 3 month data for all will be available within 6 months for complete analysis of this trial

Kirkwood et al., Proc ASCO 2003
Future Prospects

- Extrapolation to the adjuvant sphere: E4697 trial of identical multi-epitope peptide vaccine (Lawson)
- Extrapolation to larger numbers of peptides targeting both CD8 (12) and CD4(6): E1602 (Slingluff)
- Optimization of immunological adjuvants beyond ISA-51: DC, DC1, and pDC (CpG), using CD4 and CD8 peptides
Peptide antigens of melanoma available for induction of CD8 (CD4) T cell response

Differentiation Antigens

- HLA-A2 bound epitopes of
 - Tyrosinase (internal, leader)
 - gp100 (HMB45) (multiple, both mutated and native)
 - Melan A/MART-1 (multiple)

Cancer-Germline Antigens

- HLA-A1 and other epitopes of
 - MAGE

- HLA-A2 and Pan-DR bound epitopes of
 - ESO-1
E4697 Intergroup- A randomized, placebo-controlled phase III trial of yeast derived GM-CSF vs peptide vaccination vs GM-CSF plus peptide vaccination vs placebo in patients with “no evidence of disease: after complete surgical resection of “locally advanced” and /or stage IV melanoma

Hypothesis: GM-CSF will prolong survival in patients with resected stage III-IV melanoma multi-epitope peptide vaccine will augment this benefit, and be modulated by GM-CSF, acting to improve antigen presentation by dendritic cells

Stratify:
- HLA-A2 Status¹
 1. Positive
 2. Negative
- Site of Metastases
 1. Visceral
 2. Non-visceral
- Number of Metastases
 1. 1
 2. 2 - 3
 3. 4 or more
Adjuvant therapy trials for melanoma should build systematically upon the evidence

- Further progress will come from trials of adequate size, evaluating clinical and laboratory endpoints, building upon current evidence
- Immunotherapy with specific peptide vaccines, and induction of CD4/CD8 T cell responses
- Anti-angiogenic approaches assessing intermediate endpoints (bFGF, VEGF)
- Reversal of molecular processes of progression—anti-apoptotic, invasion, as targets and interventions are identified