A View to the Future: The Development of Targeted Therapy for Melanoma

Michael Davies, M.D., Ph.D.
Assistant Professor, Melanoma Medical Oncology

Science to Survivorship Symposium
September 26, 2009
How Do We Treat Melanoma?

Localized Disease (Skin)
- Surgery

Regional Disease (Lymph Nodes)
- Surgery
 +/- Systemic Therapy

Distant Disease (Lung, Liver, CNS)
- Systemic Therapy
 - Immunotherapy
 - Chemotherapy
 - NEW: Targeted Therapy
A Brief History of Chemotherapy

• 1920s: Soldiers exposed to nitrogen mustards in WWI developed infections due to loss of their white blood cells (immune system)
 – Concept: Can we treat cancer of white blood cells with similar agents?
• 1946 First published trial of successful treatment of cancer with chemotherapy
• 1950s-1980s Development of most standard chemotherapy drugs
• 1977 Discovery of the First Oncogene
 – Oncogene: Normal gene that becomes mutated \(\rightarrow\) converts normal cell to cancer
 – Beginning of research that identifies the molecules that cause cancer
• 1977 – 2009 Identification of mutations that occur in most types of cancer

‘Targeted Therapy’: Treat cancer by targeting the genes that are activated in cancer cells
Successful Targeted Therapy: CML

- CML: Biology to Therapy
 - 1960s Philadelphia chromosome
 - 1980s BCR/ABL fusion protein
 - 1990s Imatinib (Gleevec) characterized as BCR/ABL inhibitor
 - 2001 Imatinib = standard of care
 - > 90% response rate

Key: Understanding and Inhibiting a Genetic Event Present in ~All CML Patients

Philadelphia Chromosome t(9;22)

Imatinib (Gleevec) for CML

Targeted Therapy for Breast Cancer

• **Hormone Receptor (+)**
 – Treatment: **Hormonal Therapy**

• **Hormone Receptor (-)**
 – Treatment: **Chemotherapy**

• **HER2/Neu Breast Cancer**
 – Growth factor receptor
 – Amplified/Overexpressed in some breast cancers
 – More aggressive disease, less responsive to therapy

• **Trastuzumab (Herceptin)**
 – monoclonal antibody against HER2/Neu
 – Increases efficacy of chemotherapy in the metastatic and adjuvant settings
 • **BUT** Only effective in patients with HER2/neu amplification

Adjuvant Trastuzumab +/- Chemotherapy In HER2/Neu Breast Cancer

[Graph showing survival rates with and without Trastuzumab]

Romond, NEJM 353: 1673, 2005

Breast Cancer: Key
Choosing the Right Treatment for the Right Patient
The Development of Successful Targeted Therapy for Cancer

Success will depend upon
- Identifying the right targets to inhibit
- Selecting patients who will benefit
- Determining how to select an effective dose for each patient
- Developing combinations that increase efficacy while minimizing toxicity

Using this information to identify the best treatment for each patient, i.e. Personalized Therapy for Cancer
Melanoma: Targets for Therapy

• >80% of melanomas have activating mutations in kinase signaling pathways
 – BRAF
 – NRAS
 – PI3K
 – AKT
 – PTEN
 – C-KIT
 – GNAQ

2009: Targeted Therapy Trials for Patients with Specific Mutations

Mutations by Sites

- Cutaneous Melanoma (Skin)
 - 60% BRAF Mutations
 - 20% NRAS Mutations

- Acral Melanoma (palms, soles)
 - 20% NRAS Mutations

- Mucosal Melanoma (intestines, vaginal)
 - <10% BRAF
 - <10% NRAS
 - Up to 40% c-KIT

- Chronic-sun damaged skin (face)
 - Up to 40% c-KIT

- Uveal (Eye)
 - 50% GNAQ
Targeting BRAF-Mutant Melanoma

PLX4032

- Oral small molecule inhibitor of mutant BRAF
 - BRAF Mutations: ~60% cutaneous melanomas
- Side Effects
 - Fatigue, rash
- Preliminary Results: Active in BRAF-Mutant Melanoma

Before Treatment

Day 0

Day + 15

PET Scan

Flaherty, ASCO Ann Meeting, 2009

Phase I (n=16)
80% Patients with a BRAF Mutation Achieved Tumor Shrinkage
Targeting C-KIT Mutant Melanoma

- **C-KIT Mutations**
 - Very rare in cutaneous
 - Up to 40% of mucosal, acral, and CSD skin

- **Imatinib (Gleevec)**
 - C-KIT Inhibitor
 - FDA-Approved for CML, GIST
 - Previous Trials in Melanoma: ~1% Response
 - **BUT: Did not select for patients with C-KIT Mutation**

- **2009 ASCO Annual Meeting**
 40% Response Rate in Melanoma Patients with C-KIT Mutation or Amplification

Hodi, J Clin Oncol, 2008
Targeted Therapy: Conclusions and Future Directions
Targeted Therapy for Melanoma: Future Directions

• Can we identify more/better targets?

• How Can We Increase the Rate and Duration of Clinical Responses?
 – Picking the right patient for the right inhibitor
 – Combining agents together
 • Targeted Therapies, Chemotherapy, Immunotherapy

• How Do We Overcome Resistance?
 – Clinic: Biopsies from Patients Who Develop Resistance
A View to the Future…

Today

Clinical Research

Laboratory Research

The (Near) Future…

Treatment 1

Treatment 2

Treatment 3

Treatment 4

Treatment 5
Thank you for your attention!

Michael Davies, M.D., Ph.D.
Melanoma Medical Oncology
M. D. Anderson Cancer Center
713-563-5270

Research Support
MDACC SPORE in Melanoma
MDACC Center for Targeted Therapy
Dunn Foundation for Chemical Genomics
AstraZeneca Collaborative Research Alliance
American Society for Clinical Oncology
MDACC Institutional Research Grants