Melanoma

Researchers

Primary Care

Laboratory Medicine and Pathology

Oncologists
Targeted Therapy
Population-Based vs. Personalized Cancer Treatment

• **Population-based:** Treatment based on pathology diagnosis and staging

• **Personalized:** Tailor therapy to molecular characteristics of the tumor
Outline

• *BRAF* mutations

• *KIT* mutations

• Methods and specimen considerations

• Future testing strategies
BRAF Mutations in Melanoma

• Predict response to BRAF inhibitors

• Activating mutations at codon 600

• Both V600E and V600K mutations associated with response

• Prognosis in metastatic melanoma
Targeted Drugs

Diagram showing the pathways of EGFR, RAS, BRAF, PI3K, AKT, and MAPK with inhibitors such as Erlotinib, Gefitinib (EGFR Tyrosine Kinase Inhibitors), Vemurafenib, Sorafenib (BRAF Inhibitors), BKM120, BGT226, XL147, GDC-0941 (PI3K inhibitors), Perifosine (AKT inhibitor), AZD6244, GSK1120212 (MEK Inhibitors).

Modified from Pritchard and Grady, *Gut* (2010)
Much More on the Horizon

<table>
<thead>
<tr>
<th>Target</th>
<th>Number of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAF</td>
<td>53</td>
</tr>
<tr>
<td>KIT</td>
<td>14</td>
</tr>
<tr>
<td>NRAS</td>
<td>9</td>
</tr>
<tr>
<td>MEK</td>
<td>24</td>
</tr>
<tr>
<td>MET</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target</th>
<th>Number of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR</td>
<td>2</td>
</tr>
<tr>
<td>PDGFR</td>
<td>4</td>
</tr>
<tr>
<td>PI3K</td>
<td>7</td>
</tr>
<tr>
<td>CDK</td>
<td>6</td>
</tr>
<tr>
<td>NOTCH</td>
<td>5</td>
</tr>
</tbody>
</table>

www.clinicaltrials.gov search 5-09-2012; “Melanoma AND "XXX"
BRAF Mutations

- ~50% of all melanoma

BRAF Mutation Breakdown

- 78% V600E
- 18% Other
- 4% V600K

Analysis of 273 BRAF-mutant melanomas from 6 independent studies
Features of *BRAF*+ Melanoma

<table>
<thead>
<tr>
<th>Feature</th>
<th>BRAF-Mutant</th>
<th>BRAF-Not Mutant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Younger (median 52)</td>
<td>Older (median 61)</td>
</tr>
<tr>
<td>Site</td>
<td>Chest and Abdomen</td>
<td>Head and Neck</td>
</tr>
<tr>
<td>Subtype</td>
<td>Superficial Spreading</td>
<td>Acral Lentiginous</td>
</tr>
<tr>
<td>Microscopic features</td>
<td>Heavy melanin; large epithelioid</td>
<td>Lighter melanin</td>
</tr>
<tr>
<td>Chronic sun-damaged skin</td>
<td>Less likely</td>
<td>More likely</td>
</tr>
<tr>
<td>Number of moles</td>
<td>Higher</td>
<td>Lower</td>
</tr>
</tbody>
</table>

Adapted from Long et al. (2011) *JCO*
BRAF Inhibitors In The News

Feb 22, 2010

(Target Cancer)
New Drugs Stir Debate on Rules of Clinical Trials

Sept 18, 2010
BRAF Inhibitors in Melanoma

BRAF-mutated melanoma treated with Vemurafenib

BRAF Status and Prognosis

Long et al. (2011) JCO
Why Not Try BRAF Inhibitors In All Melanoma Patients?
BRAF Inhibitors *Stimulate* Tumors Without BRAF Mutations

Modified from: Kwong and Chin Cell (2010).
Side Effects of BRAF Inhibition

Images Courtesy of Dr. Kim Margolin
BRAF Inhibitor Resistance

- Drug resistance often in <1 year

- NRAS Q61K

- "MAP Kinase" Activation
 - MEK1 C121S

Nazarian et al. 2010 *Nature*; Wagle et al. 2011 *JCO*
BRAF-Inhibitor Resistance

Before Treatment | Vemurafenib Treatment | Relapse at 6 months

Wagle et al. (2011) JCO
Outline

• *BRAF* mutations

• *KIT* mutations

• Methods and specimen considerations

• Future Testing Strategies
Role of KIT Mutation Testing

• Imatinib therapy
 – 30-50% response in KIT-mutant melanoma
 – No response in KIT-WT

• Other related inhibitors?
KIT by Melanoma Subtype

<table>
<thead>
<tr>
<th>Melanoma Type</th>
<th>KIT Mutant (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acral</td>
<td>15%</td>
</tr>
<tr>
<td>Mucosal</td>
<td>20%</td>
</tr>
<tr>
<td>Chronic sun-damaged cutaneous</td>
<td>15%</td>
</tr>
<tr>
<td>Eye (ocular)</td>
<td>10%</td>
</tr>
<tr>
<td>All Others (Non-chronic sun-damaged cutaneous)</td>
<td><3%</td>
</tr>
</tbody>
</table>
KIT and BRAF Mutations Do Not Occur Together

CSD = Chronic Sun Damaged

Curtin et al. 2006 JCO
Outline

• BRAF mutations

• KIT mutations

• Methods and specimen considerations

• Future Testing Strategies
Heterogeneity

- Specimen
- Tumor
Specimen Quality

• Tumors are usually fixed with formalin
 – Fixation time poorly controlled; affects DNA

• Other fixatives even worse
Specimen Quantity

• Limited amount of tissue

• Sometimes have to prioritize when multiple tests requested
Specimen Heterogeneity

- Tumor/non-tumor cells mixed
 - Too many non-tumor cells may affect test results
- Mutation heterogeneity within tumor
- Two different tumors in one sample
Manual Dissection to Enrich Tumor

This Tissue Was Used to Make DNA

Metastatic Colon CA 200X
Tumor Tests Must Account for Unique Specimen Issues

• Poor Quality DNA
 – Must detect mutations in fragmented DNA

• Limited Quantity
 – Highly robust conditions required

• Heterogeneity
 – Enrichment of tumor by manual dissection
Mutation Detection Strategies

• *BRAF*:
 – Melting Curve Analysis
 – Many Other Methods

• *KIT*:
 – DNA Sequencing
One Way To Detect *BRAF* Mutations

PCR Product

V600E Sensor
Anchor

Mutation Absent
(red trace)

TEMPERATURE (C)

FLUORESCENCE –(dF/dT)
One Way To Detect BRAF Mutations

V600E Sensor Anchor

PCR Product

V600E Mutation

V600E Mutation (green trace)
BRAF Assay

![Graph showing comparison between Non-mutant Sample and V600E Mutant](image)

- **Non-mutant Sample**
- **V600E Mutant**

TEMPERATURE (C)
KIT Sequencing
Outline

• *BRAF* mutations

• *KIT* mutations

• Methods and specimen considerations

• Future Testing Strategies
‘Next-Gen’ Sequencing

- Technology maturing rapidly
- Theoretical high sensitivity
 - Detect low-level resistance?
- Analysis methods challenging
- Too much information?
 - Only a few actionable targets
Pilot Study Using Molecular Profiling of Patients’ Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers

Gene Panels

- Multiple genes tested at once
- Potential to detect mutations that can be targeted by experimental drugs
OncoPlex™ v1

<table>
<thead>
<tr>
<th>Tier 1: Currently Actionable</th>
<th>e.g. BRAF, KIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2: Actionable in the Near Future</td>
<td>e.g. MITF, MEK1</td>
</tr>
<tr>
<td>Tier 3: Frequently Mutated</td>
<td>e.g. GNAQ, GNA11</td>
</tr>
<tr>
<td>Germline Pharmacogenomics</td>
<td>e.g. UGT1A1, COMT</td>
</tr>
</tbody>
</table>

- **Genes Targeted:** 98
- **Total Exons:** 3,370
- **DNA Sequenced:** 494,848 bp
- **Average Read Depth:** 1,687
Each **RED** box represents a mutation

BRAF V600E
This mutation predicts response to Vemurafenib.
Next-Generation Sequencing on Tumor Tissue

Too Much Power?
"Actionable" means we already know how to use the test results; e.g. *BRAF*
Mutation Information

BRAF V600E (c.1799T>A) mutation in Melanoma

BRAF-Associated clinical trials

Great effort was made to include all clinical trials relevant for this mutation. However, the completeness of this information cannot be guaranteed.

United States By State (18)

<table>
<thead>
<tr>
<th>Protocol No.</th>
<th>Phase</th>
<th>Title</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00049487</td>
<td>Phase I</td>
<td>Study of TAK-733 in Adult Patients With Advanced Nonhematologic Malignancies</td>
<td>Michigan, New York</td>
</tr>
<tr>
<td>NCT00859127</td>
<td>Phase I</td>
<td>A Study of ARRY-438162 (MEK162) in Patients With Advanced Cancer</td>
<td>California, Colorado, Maryland, Massachusetts, Michigan, Ohio, Tennessee, Texas</td>
</tr>
<tr>
<td>NCT01072175</td>
<td>Phase I</td>
<td>Investigate Safety, Pharmacokinetics and Pharmacodynamics of GSK2118430 & GSK1120212</td>
<td>California, Connecticut</td>
</tr>
</tbody>
</table>

Author: Jeff Sosman, M.D.
Conclusions

- **BRAF** and **KIT** mutations in melanoma tissue predict response to targeted inhibitors
 - **BRAF**: Vemurafenib and other similar
 - **KIT**: Imatinib and other similar

- Specimen characteristics affect test accuracy

- Future testing is likely to analyze multiple genes and resistance mutations to determine optimal therapy